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Abstract: - The work continues the development of Fourier transform in elliptic coordinates. Several analytical 

results for elementary and special functions have been obtained. In fact these are the new relations for the 

integral representation for the multiplication of two Bessel functions of zero order. We analyze the natural 

restrictions of application of these formulae. Also we provide the recommendations based on the numerical 

analysis for the using of obtained results. 
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1 Introduction 
The scope of Fourier transform studies is generally 

devoted to rectangular and polar coordinates [1]-[5]. 

The range of applications is wide, for example [6]-

[8]. The methods based on the Fourier transform 

have a good advantage in comparison with classical 

finite-difference schemes. This is a low calculation 

time saving the high accuracy [2], [5]. 

Previously we have introduced the Fourier 

transform in elliptical coordinates [9]. The resulted 

formulae of direct and inverse transforms include 

the product of two Bessel functions of zero order. 

However, using of these results is complicated 

enough due to the highly oscillating integrand of the 

proposed formulae. 

The purpose of this work is obtaining the analytical 

examples of Fourier transform in elliptic 

coordinates. Such examples are very useful for 

testing of calculating algorithms. Moreover, new 

integral relationships for the Bessel functions can be 

obtained. 

One important remark is that the formulae whose 

will be presented relate to the case of axial 

symmetry so the integrand function depends on the 

quasi radial elliptic coordinate. 

At first we briefly reproduce the main steps of 

Fourier transform obtaining in elliptic coordinates. 

After this we consider the integration method. We 

make change of variables to apply the well-known 

relationships collected in literature. Combination of 

different formulae allows cutting out the initial 

"time" variable leaving just "frequency" dependence 

for Fourier image. 

Finally, we include the numerical analysis of 

application of each formula and conclude the 

considered study. 

 

2 Fourier Transform in Elliptic 

Coordinates 
We begin with definition of coordinates. The 

relation of rectangular coordinates (x,y) and elliptic 

coordinates (μ,ν) is:  

  
cosh cos ;

sinh sin .

x a

y a

  

  
 (1) 

The coordinates ( , )   vary within the following 

ranges:  

 

   0; 0 < 2 .        (2) 

In general form the Fourier transform in two 

dimensions is:  

 

   ( ) = ( ) ,i

D
F f e d 

rω
r r    (3) 

where ={ , }x yr  and ={ , }x y ω . Here the 

integral is taken through the whole area D, which is   

for rectangular coordinates 

 

={( , ) : ( , ), ( , )}D x y x y       

and  

={( , ) : [0, ), [0,2 )}D        
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for elliptic coordinates. And the r is the scalar 

product of vectors r and  [8]. Expanding this scalar 

product in the exponent, we receive the formula in 

elliptic coordinates. Let us to do this in details. The 

scalar product in rectangular coordinates is:  

 

   = .x yx y  rω    (4) 

Then we change coordinates taking into account 

(1). Continuing with vector  we have:  

  

cosh cos ; sinh sin .x yb b            (5) 

After small manipulations with hyperbolic 

functions we receive instead of (4):  

 

= 0.5cosh( )cos( )

0.5cosh( )cos( ).

x yx y  

 

     

  
   (6) 

Thus, we have the main expression for Fourier 

transform in elliptic coordinates using the (3): 

  
2

2 2 2

0 0
( , ) = ( , )( )sinh sin

exp[ 0.5 (cosh( )cos( ))]

exp[ 0.5 (cosh( )cos( ))] ,

F a f

i ab

i ab d d

 

 

 

 

       

    

     

 
  (7) 

where ( , )f    - function of the space 2( )L D . 

Inverse transform has a similar form:  

   
2

2 2 2

0 0
( , ) = ( , )( )sinh sin

exp[ 0.5 (cosh( )cos( ))]

exp[ 0.5 (cosh( )cos( ))] .

f b F

i ab

i ab d d

 

   

 

   

       

     

      

 
 (8) 

The systems that possess axial symmetry are 

often the most interesting, especially in optics. If  

( , ) ( )f f     then it is possible to obtain more 

applicable formulae instead of (7)-(8). 

The final result is:    

 

2

0
0

0

( ) = ( ) ( cosh( ))

( cosh( ))cosh(2 ) ,

F a f J c

J c d



 



     

   

   (9) 

where 0.5c ab . We also used the identity  
22sinh 1 cosh(2 )   . 

The formula (9) represents Fourier transform in 

elliptic coordinates for the case of axial symmetry. 

The inverse formula is:  

 

2

0
0

0

( ) = ( ) ( cosh( ))

( cosh( ))cosh(2 ) ,

f b F J c

J c d



 

  

    

   

  (10) 

which is the inverse Fourier transform in elliptic 

coordinates for the case of axial symmetry. 

For more details see [9]. 

The integral transform (9)-(10) generalizes the 

Fourier-Bessel transform. Major axis A and minor 

axis B of ellipse is equal correspondingly to 

coshA a   and = sinhB a  , where a is focus 

distance. Eccentricity is 1/ cosh   . If the major 

axis A is constant and 0  then   and 

0a  . So cosh sinha a r   . As a result we 

have transformation from elliptic coordinate  to 

polar coordinate r. In  - space we have the similar 

transformations. Therefore,   becomes 
r . 

Thus, we have well-known Fourier-Bessel 

transform instead (9)-(10):  

   

0
0

0
0

( ) = 2 ( ) ( ) ,

( ) = 2 ( ) ( ) .

r r

r r r r

F f r J r rdr

f r F J r d





  

    




 

Parseval’s formula [7] also is valid:  

 

  

2 2

0

2 2

0

( ) cosh(2 )

( ) cosh(2 ) .

a f d

b F d





  

   

  




  (11) 

 

 

3 Analytical Formulae 
We can present now the integrals which could be 

calculated analytically and consequently analyzed in 

terms of the elliptic Fourier transform. These 

formulae extremely important for the verification 

process of numerical integration. 

For the starting point we make a change of 

variables as:  

 

  sinh ; sinh .                 (12) 

 Correspondingly, we have 2/ 1d d    ,   

2/ 1d d     and instead of (9):   

 

2 2 2

0
0

2
2 2

0
2

( ) = ( ) ( ( 1)( 1) )

(1 2 )
( ( 1)( 1) )) ,

1

F a f J c c

J c c d



        

 
      




(13) 

Expression (13) allows us to provide some 

analytical possibilities. 

For the convenience we insert the exact formulae 

taken from the literature source and provide the 

needed parameters. 
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3.1 Combination of 2.12.27 from [10] and 

6.788 from [11] 
The initial integral is 2.12.27 from [10]:   

 

 2 2 2

0
0

2 2 2 2

cos(2 ) sin

( 1) ,
2 2

m

m m

mz J p q z dz

p p q p p q
J J



 

      
     

   
   


 (14) 

where 0 q p  . Taking 0m  , 
2 2 2 24 ( 1)( 1)p c      and 2 2 2 24 ( 1)q c      

we have:   

 

 

 

 

2 2

0

2 2

0

2 2 22 2
0

0

( 1)( 1)

( 1)( 1) )

1
2 ( ) ( 1) .cos cos

J c c

J c c

J c z z dz


      

      

     
 

   (15) 

Substitution of (15) into (13) results in:  

   

 

2
2

20

2 2 22 2
0

0

(1 2 )
( ) ( )

1

2 ( ) ( 1) ,cos cos

F a f

J c z z dzd





 
   

 

      





  (16) 

Special case of 6.596.1 [11]:  

 

 
2 1

2 2

2 2 /20

11 1

( )

2 ( 1)
( )

k

m m

k

m kk m k

z
J p z q dz

z q

k
J pq

p x




   

 


 


  (17) 

with 0m  , 1/ 2k   , 2 22 cosp c z    and   

after changing of the order of integration allows to 

receive:  

  

 
 2

2

2 20

cos 2 1cos
( ) = .

2 cos

c z dza
F

c z


 


 

     (18) 

Formula (18) is a Fourier image for the function 

( )f   :  

   
2

2

1
( ) .

1 2
f

 
 

 
             (19) 

 

3.2 Combination of 2.12.27 from [10] and 

6.726.2 from [11] 
As a start we use the previous result (16). Applying 

the 6.726.2 from [11]:  

 

 

 

2 2 /2 2 2

0

1/2 2 2 /2 1/4 2 2

1/2

( ) cos( )

( )
2

m

m

m m m

m

y q J p y q sy dy

p q p s J q p s




   



  


 


 (20) 

with 0,m y   , 2 2 2 2 2( 1)cos / ( cos ),q z z    
2 2 2 2= 4 ( cos )p c z    we have:  

 
2

2 2
2 2 2

2

2 2 2 1/20

( ) =

( 1)cos
cos 4 ( )

( )

(4 ( ) )

a
F

z
c w z s dz

w z

c w z s





 


  
 

 
 



       (21) 

with 2 2 2( ) cosw z z   and 0 < s p . 

Formula (21) is a Fourier image for the function 

( )f  :  

 

   
2

2

1
( ) cos .

1 2
f s


  

 
            (22) 

 

3.3 Combination of 2.12.27 from [10] and 

6.596.5 from [11] 
Once again we use the result of (16). The formula 

6.596.5 from [11] is:  

 
2 2

1

2 20

1

( )
( )

( )

2 ( ) ( )
,

nm
n

m

n

m

n m

J p y q
J sz y dz

y q

n J pq

s q














         (23) 

where Re( 2) Re 0m n     and > > 0p s . 

Applying this with 0m  , 2 2= 2 cosp c z   

and 2 2 2 2( 1)cos / cosq z z      after 

changing of the order of integration we receive:  

  

  
2 1

2

0
0

2
( ) 2 1cos

n

n

a
F J c z dz

s




     (24) 

with 0 < p s . 

Formula (24) is the Fourier image of the function  

( )f  :  

 

  
2

1

2

1
( ) ( ) .

1 2

n

nf J s 
   

 
            (25) 
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2.4 Combination of 2.12.27 from [10] and 

6.726.2 from [11] 
 

Finally, we introduce the fully analytical formula 

with completed integration. The formula 6.597 [11] 

is:   

 

 

 

1 2 2

2 2 2 20

2 2

2 2

( )

( )

( )
,

( )

n n
k

n n
k

k

J sy
y J h y v dy

y v y

K s
J h v

v


  

  


 




     (26) 

where 1< Re( ) < 2 Re( )n k  , s h , Re( ) > 0 .   

nK  is Bessel function of third type of order n. 

Using the (16) and applying (26) with y   ,   

0k  , 2 2 2 2= ( 1)cos / cosv z z     and 

2 2= 2 cosh c z   we receive the result after 

changing of the order of integration:  

 

  

2

2 2
2 2

0 20

( ) = ( )

( 1)cos
2 ( )

( )

n

nF a K s

z
J cv z dz

v z



   

  
 

 
 


 (27) 

with 
2 2 2( ) cosv z z  . 

Here we take ( )f   as:  

  
2 1

2 2 2

1 ( )
( ) .

1 2

n

nJ s
f

  
 

   
             (28) 

The integral in (27) is evaluated in terms of 

expression (14) in reverse manner. If we take   

2 22 ( 1)(1 )p c    ,  2 22 1q c     and 

0m   we obtain the final result:  

   

 

2

2 2 2 2

0

2 2 2 2

0

( ) ( )

( 1)(1 )

( 1)(1 ) .

n

nF a K s

J c c

J c c

    

      

     

    (29) 

This is a Fourier image for the function (28). 

 

3.5 Results with elliptic variables 

Turning back to the  and   variables using (12) 

we obtain the following pairs. 

 

2

2 20

cosh
( )

cosh2

cos(2 cosh( )cos )
( )

2 sinh cos

f

c za
F dz

c z









  




 

 


      (30) 

with 0.   

 

2

1 2 2

2 2 20

cosh
( ) cos( sinh )

cosh2

( )

cos 2 ( ) ( ) cosh cos

4 ( ( ) )

f s

F a

cw z w z s z dz

c w z s








   



  

 




   (31) 

where 
2 2 2( ) = sinh cosw z z  , 0 coshs c    . 

 

 

1

2 1

0
0

cosh
( ) ( sinh )(sinh )

cosh2

( ) 2 2 cosh cos ,

n

n

n n

f J s

F a s J c z dz




 

 


    



  

    (32) 

where 0 2n   and  2 coshs c   . 

 

 

 

1

22

2

2

0

2

0

cosh ( sinh )(sinh )
( )

cosh2 sinh

( ) ( )

cosh 1 sinh

cosh 1 sinh ,

n

n

n

n

J s
f

F a K s

J c ic

J c ic





 

 

  
  

   

    

     

    

     (33) 

where 0, 1 2n     and 2 coshs c    . 

The results in this form are preferable since the 

numerical integration is more stable: the integrand 

function behaves less oscillatory. See the next 

section for details. 

Unfortunately, no one of these formulae are not 

fully applicable due to limitations risen in 

derivation. So we cannot define these pairs as 

Fourier transformation pairs because the reverse 

transform is impossible to define. 

 

 

4 Numerical Analysis 
Now we analyze the previously obtained results in 

terms of numerical calculation. Due to the 

restrictions of application every formula must be 

tested separately. 

For the tests we use a laptop PC Asus N56V with 

Processor Intel Core i7-3610QM CPU 2.3 GHz and 

8GB of RAM. The calculation has been performed 

by Wolfram Mathematica. 

We compare the results of numerical integration 

using the built-in capabilities of Mathematica 

package for the direct approximation of (9) with the 

one for the direct approximation of results in section 

3.5, excepting the last formula which is fully 

analytical. The built-in integration methods include 

Levin-type collocation [12], Clenshaw-Curtis [13] 

rule and many others. About the work of built-in 
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"Numerical integration" function you can see the 

Manual. 

The purpose of this comparison is to show how 

the incoming parameters influence to the accuracy 

and the calculation time for the approximation 

analog of (9). The results from section 3.5 are used 

as a sort of quasi-analytical or benchmark result. 

We also notice that the numerical analysis of the 

(13) could be useful. But on practice this form is not 

applicable since it has low accuracy and bigger 

calculation time in comparison with (9). This fact 

can be easily explained using the Fig.1. We compare 

function ( )f   from (22) with function  ( )f   from 

(31). The (31) has almost non-oscillatory behavior. 

In contrast the (22) oscillates rapidly even for  

s=0.01. These oscillations cost an expensive 

calculation "price". 

a)

 
b)

 
Figure 1: Comparison of a) ( )f    (22) with b)   

( )f   (22). The parameter s=0.01. The range of  

corresponds the one of  sinh    

 

We use the following parameters for ( )F   

calculation.  0.01 ( 1) / ( 1)maxi N       where  

1,2,..i N ,  N=128 and  max  is taken individually 

for each formula. The parameters of Mathematica 

NIntegration function are {Accuracy goal→8, 

Method → "Symbolic Preprocessing", "Oscillatory 

Selection" → True}  for all formulae. 

We estimate how fast the 1( )F   calculated by 

(9) numerically 2( )F    coincides with results from 

section 3.5 in respect to incoming parameters. It is 

possible to call this as "accuracy" with some 

reservations. The estimated parameter is:  

  
1 2

1

( ) ( )
100%.

( )

F F
A

NF

 



  



             (34) 

The calculation time using quasianalytical results   

1( )F   spends 1.5-3.0 seconds of CPU time in 

average and never exceeds 6 seconds. The time 

calculation for 2( )F   will be presented for each 

result independently.  

 

4.1 Result 1 (30) 
We take 0.5;1;5a  , 0.4;2;4b   and 

0.1;1;10c     correspondingly. 

Since the upper limit of integral (9) is infinity we 

need to break off somewhere the numerical 

integration. And for the upper limit we take value of  

max 10;20;30  . See the results for CPU time and 

accuracy A in Table 1. 

 

Table 1. The influence of max and c to the CPU 

time t and accuracy A for the numerical integration 

of (9) in relation to (30) 

max c t, s A, % 

10 

0.1 16.6 0.24 

1.0 19.6 9.67E-2 

10.0 26.5 1.35E-2 

20 

0.1 22.0 8.17E-6 

1.0 23.8 2.89E-6 

10.0 32.1 6.83E-7 

30 

0.1 26.6 1.81E-9 

1.0 28.6 5.26E-10 

10.0 29.8 8.95E-10 

 

According to the Table 1 the max 20   allows to 

have optimal combination of accuracy and time. 

And smaller c results in smaller CPU time, but the 

accuracy becomes worse simultaneously. 

 

4.2 Result 2 (31) 

Since the limiting condition is 0 coshs c    , the 

using of (35) is defined mainly by the relation 

between s and c parameters. 
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We try to define the lowest boundary 0 where 

the results of numerical integration of (9) are closed 

to that of (31). The parameters A < 10E-3 and 

max 30  . The CPU time varies in 43-53 seconds 

for numerical integration of (9) and 2-6 seconds for 

the (35). 

The results for 0  are presented in Table 2. For 

example, if c=2 and s=1, then we can argue that 

function   from (35) differs from that of (9) no more 

than 0.1% in the interval [2.6, ∞). 

 

Table 2. The lowest boundary 0  for the different 

parameters c and s 

c = 0.5ab s 
0  

0.2 

a = 0.5 

b = 0.8 

0.01 1.0 

0.1 2.2 

0.2 2.6 

2 

a = 2 

b = 2 

0.1 0.5 

1 2.6 

2 3.2 

20 

a = 5 

b = 8 

1 1.3 

10 3.2 

20 3.7 

 

The analysis of data from the Table 2 permits to 

conclude that the significant increasing of area of 

application for the formula (31) is possible when the 

ratio c/s=20 at least. 

Also we need to notice that in resulted function 

for Fourier image ( )F   there are oscillations if we 

take c > 1. For the c=20 ( )F   is a highly 

oscillating function. So the number of points N of 

discretization of   influences to the accuracy 

parameter A (34). However, N does not change the 

general trend of that significantly smaller s relative 

to c is needed for better results of 0 . 

 

4.3 Result 3 (32) 

Since the limitation 2 coshs c    the possible 

values of   cannot exceed the initially defined 

value max . We set up this value equal to four. 

The main feature of (32) is that the Fourier 

image depends on parameter n as a factor before the 

integral. The integral itself is the same for all 

possible values of n and s. 

We analyze different max2 coshs s c      

values and max values. We try to understand what 

parameters should be taken to provide the best 

matching of the results of the numerical integration 

of (9) and that of (32). 

We take a=0.5, b=0.4, so c=0.1. It is needed to 

have relatively small oscillating function f(). 

The time of calculation for the analytical formula   

(32) is approximately 3 seconds. 

The scope of calculation results is in Table 3. 

 

Table 3. The influence of max and s to the CPU 

time t and accuracy A for the numerical integration 

of (9) in relation to (32) 

n =1/2 max = 10 max = 20 

s t, s A, % t, s A, % 

0.1 19.6 1.8E-4 22.9 4.6E-11 

1 21.1 1.4E-4 25.4 1.3E-10 

10 25.0 1.9E-4 25.3 2.7E-10 

n =1 max = 10 max = 20 

s t, s A, % t, s A, % 

0.1 35.1 0.2 41.9 3.9E-8 

1 36.6 0.2 40.8 5.5E-8 

10 37.1 0.9E-1 43.3 8.2E-9 

n =3/2 max = 10 max = 20 

s t, s A, % s t, s 

0.1 93.7 0.1 110.6 7.5E-4 

1 92.9 0.2 109.9 1.8E-3 

10 92.3 1.9E-2 104.8 3.9E-3 

 

We recommend to take max = 20 at least. 

We notice that the higher value of parameter  s 

allows to have the better accuracy on the one hand 

but in other hand it increases the number of 

oscillations in given function f() (see (32)) that 

rises the problems in numerical calculation and 

consequently reduces the accuracy. 

 

4.4 Result 4 (33) 
Finally we consider the comparison of the numerical 

integration (9) with completely analytical formula 

(33) 

Once again we analyze CPU time t and accuracy 

A (see (34)) for different values of max, n and . 

We take 0.5 0.5 0.5 0.4 0.1c ab     , max 6    

and s = 1. The max   is not exceeds the 10 since the 

function f() from (33) is damping fast. 

The possibilities of Mathematica permit to 

analyze relatively small values of . In some cases 

the calculation is not finished and failed. See the 

Figure 2. 

The results for numerical integration using (9) 

are in Table 4. 
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Figure 2. The numerical integration result F()   

compared with analytical one (33). The parameters 

taken are n=0, =0.3, max=5, max 6  , s=1. 

 

Table 4. The influence of max and  to the CPU 

time t and accuracy A for the numerical integration 

of (9) in relation to (33) 

n =-1/2 max = 2.5 max = 5 

s t, s A, % t, s A, % 

0.001 21.6 4.0E-4 33.2 6.3E-5 

0.01 21.3 3.2E-3 25.4 6.1E-6 

0.1 23.6 0.2 33.2 2.8E-4 

n =0 max = 5 max = 10 

s t, s A, % t, s A, % 

0.001 61.9 2.8E-3 75.8 1.2E-9 

0.01 63.6 4.7E-4 78.3 2.8E-9 

0.1 84.9 5.6E-3 105.4 2.0E-8 

n =1/2 max = 5 max = 10 

s t, s A, % s t, s 

0.001 79.8 1.6E-2 112.6 4.2E-6 

0.01 79.3 1.7E-2 130.8 3.4E-6 

0.1 94.5 4.7E-2 135.0 9.2E-6 

n=1 max = 5 max = 10 

s t, s A, % s t, s 

0.001 207.4 2.6 304.4 5.6E-3 

0.01 202.0 1.8 302.6 3.4E-3 

0.1 - - 340.9 4.5E-3 

 

For smax = 5 and n=1 the calculation 

result provided by Mathematica has a very low 

accuracy (A > 50%), so we do not include it into the 

table. For n=3/2 the calculation provided by 

Mathematica failed for all test parameters tried. 

Thus, the importance of analytical result (33) 

increases. 

 

 

5 Conclusion 
For previously received Fourier transformation 

formula (9) in elliptical coordinates we introduce 

four analytical examples. These results can be 

considered as inverse Fourier transformation 

examples changing a to b,  to  and f() to F(). 

Three of these examples are also the integrals of 

more simple type. And one more formula is fully 

analytical. There are also natural restrictions for the 

parameters used. So it is needed to take them into 

account. Due to these limitations we cannot 

construct even one complete Fourier transformation 

pair. 

However, the obtained formulae are the new 

relationships for the products of two Bessel 

functions of zero order with arguments of 

hyperbolic functions. 

The analytical formulae like (30-33) are 

extremely important for the development of 

calculating algorithms. We provide a detailed 

comparison for the different parameters used in 

every case. Also we formulate the recommendations 

for the better choice of these parameters. Thus, we 

prepare a base for further development of 

calculating algorithms. 
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